Recording and slides: ASQ RRD Series Webinar: Robustness Thinking In Design For Reliability – A Best Practice In Design For Reliability

On Thu, Mar 11,  Matthew Hu presented “ASQ RRD series webinar: Robustness Thinking in Design for Reliability – A Best Practice in Design for Reliability”

Abstract
Reliability is one of the most important characteristics of an engineering system. Reliability can be measured as robustness over time as a leading key performance indicator (KPI). Robustness thinking is essential to improve quality and reliability proactively by factoring the activities of design for reliability. Nothing can be substituted for thinking. Early robustness development in manufacturing can reduce the variability of those processes with valuable benefits to manufacturing yields, cycle time and costs. Product Development has a huge impact on revenue stream, reliability. It is most cost-effective and less time-consuming to make design insensitive to uncontrollable user environments in upfront design phase. Robustness development in Design for Reliability (DFR) process provides benefits in reduction of early-on physical testing and traditional test-fix-test cycles. Robustness achieved early in development enables shorter cycle times in the later design phases.

Objectives of the presentation
• Define robustness
• Explain product development using Robust Engineering versus traditional product development
• Explain Robust Design for Reliability
• Define Objective Function, Basic Function, and Ideal Function
• Explain how Ideal Function and Two-step Optimization lead to robust technology development and achieve “Better, Cheaper, Faster” product development
• Explain how to conduct a preliminary robustness assessment
• Explain the value of robustness assessment
• LiDar case study in robust autonomous driving technology development

Important Takeaway
• Make design insensitive to uncontrollable user environment (Noise)
• Early development of robustness is key to proactive quality and reliability Improvement
– Capture, front load noise and manage noise
– Gain control of your product performance
– Optimize robustness – avoid all failure modes
• Apply Robust design principles at early stages of product design to “forecast” problems and take preventive action.


PRESENTATION